

DOMANDA DI MODIFICA SOSTANZIALE DELL'AUTORIZZAZIONE INTEGRATA AMBIENTALE

B18 relazione tecnica dei processi produttivi

Marzo 2023

Sommario

1	INTRODUZIONE				
	1.1	Modalità di stoccaggio delle materie prime e dei prodotti finiti	5		
	1.2	Emissioni in atmosfera	6		
	1.3	Acque di scarico	7		
	1.4	Risorse idrica	8		
	1.5	Rifiuti	9		
	1.6	Rumore verso l'esterno	10		
	1.7	Traffico veicolare	11		
	1.8	Energia	11		
	1.9	Acque meteoriche	12		
_		Prevenzione incendi			
ン	RIASSUN	ITO DELDATI DI PRODUZIONE E CONSUMI ANNO 2022	14		

1 INTRODUZIONE

Lo stabilimento ZINCATURA NAZIONALE esercisce una attivita' di zincatura elettrolitica mediante l'impiego di 4 impianti semiautomatici di produzione denominati impianto 1-2-4-5.

E' presente inoltre un impianto di verniciatura per immersione (NON IMPIANTO A.I.A.).

I 4 impianti presenti sono eserciti normalmente per 16 ore/gg, a volte per 24 ore/gg in base alle commesse in ingresso allo stabilimento.

Nel 2020 in corrispondenza delle linee galvaniche sono stati lavorati circa 20.000 tn di prodotti finiti.

La capacita' produttiva dell'impianto n. 5 previsto in sede di progetto, (su 16 ore di esercizio), prevedeva una produzione annua di 8000 tn di prodotto finito.

Inoltre il **progetto originario ed autorizzato relativo all'impianto n. 5** prevedeva la realizzazione delle seguenti vasche di trattamento (lavaggi esclusi):

FASE DI LAVORO	VOLUME TOTALE VASCHE IN PROGETTO (*)
Passivazione	12
Sgrassatura chimica	5,4
Decapaggio	12
Sgrassaggio elettrolitico	7,8
Neutralizzazione	3
Zincatura	60
TOTALE	100

In fase di realizzazione dell'impianto, l'impresa ha optato per la realizzazione di un impianto di piu' ridotte dimensioni con vasche il cui volume e' il seguente :

IMPIANTO 5 REALIZZATO

FASE DI LAVORO	VOLUME TOTALE VASCHE REALIZZATE
	(*)
Passivazione	4,80
Sgrassatura chimica	4,32
Decapaggio	6,40
Sgrassaggio elettrolitico	4,64
Neutralizzazione	1,60
Zincatura	38,4
TOTALE	60,16

(*) viene indicato il volume geometrico delle vasche; il volume di soluzione contenuta nelle vasche e' pari all'80% del volume geometrico.

Nella sostanza l'impianto realizzato ed in esercizio presenta un volume di vasche pari al 60% delle vasche in progetto.

I 4 impianti di zincatura sono totalmente automatizzati ad esclusione delle operazioni di carico e scarico dei rotobarili; il trasporto dei singoli rotobarili nelle vasche di lavoro (sgrassatura-decapaggio-zincatura-eventuale passivazione, oltre ai risciacqui tra ogni fase e quella successiva) sono effettuati da sistemi di trasbordo comandati da PLC.

A servizio dell'attivita' e' da tempo attivo un cogeneratore a gas metano autorizzato dalla Regione del Veneto che, oltre a produtte energia elettrica per il fabbisogno degli impianti (854 kw elettrici), garantisce anche una elevata produzione di acqua calda necessaria al riscaldamento di alcuni bagni ed all'asciugatura dei pezzi in uscita dalle linee galvaniche.

Questa installazione permette pertanto di non utilizzare gli impianti termici a gas a bordo impianto che entrano in funzione solo per sopperire a momenti di fuori servizio del cogeneratore.

1.1 Modalità di stoccaggio delle materie prime e dei prodotti finiti

Le materie prime giungono dai clienti generalmente su cassoni metallici (arrivo sfuso) su scatole di cartone o in sacchi; detti prodotti sono stoccati al coperto e comunque non danno luogo a percolamenti di alcun tipo.

Anche i prodotti finiti vengono stoccati prevalentemente su contenitori metallici , al coperto, e non danno luogo a spandimenti di alcun tipo.

I prodotti chimici di impiego costante negli impianti sono stoccati in posizione limitrofa agli impianti stessi, mentre lo stoccaggio massivo delle materie prime (prevalentemente liquide) si esegue in un adatto magazzino esistente dotato di pavimento plastificato, cordolo di contenimento, totalmente coperto.

I prodotti chimici sono principalmente costituiti da :

Zinco sfere
potassio cloruro
soda caustica in perle
Acido cloridrico
Acido nitrico 42 Be
soda caustica soluzione 30%
acqua ossigenata 130 vol.
acido nitrico 36 Be
passivazioni
sigillanti
inibitore di corrosione
brillantanti
sgrassature
tensioattivi per sgrassature

1.2 Emissioni in atmosfera

Al fine di contenere al minimo le <u>emissioni in atmosfera</u>, tutti gli impianti dispongono di sistemi di depurazione a scrbber per il lavaggio dei fumi aspirati dagli impianti di zincatura.

Gli scubber, come dimostrano le analisi effettuate tutti gli anni, garantiscono ampiamente i limiti fissati dall'autorizzazione vigente.

Detti impianti sono sottoposti a manutenzione costante e registrata da parte del personale di manutenzione dello stabilimento.

Le emissioni del 2022 sono state le seguenti :

					Analisi d	el giorno 13.12.20)22
		Concentrazione					
		limite da normativa					
Punto di		o autorizzazta in AIA	Portata	Flusso di			
emissione	Parametri monitorati	((Nm3/h)	massa	U.M.	Concentrazione	U.M.2
	polveri	160 gr/h		155	kg/anno	4,3	mg/Nm3
	acido cloridrico	50 gr/h		86	kg/anno	2,4	mg/Nm3
2					kg/anno		mg/Nm3
_					kg/anno		mg/Nm3
					kg/anno		mg/Nm3
			8983		kg/anno		mg/Nm3
	polveri	200 gr/h		343	kg/anno	2,4	mg/Nm3
	acido cloridrico	230 gr/h		243	kg/anno	1,7	mg/Nm3
27	sodio	230 gr/h			kg/anno	< 0,2	mg/Nm3
21	cromo III	45 gr/h			kg/anno	< 0,02	mg/Nm3
	HNO3	230 gr/h			kg/anno	< 0,02	mg/Nm3
	Cr VI	2 gr/h	35678		kg/anno	< 0,01	mg/Nm3
	polveri alcaline	5 gr/h			kg/anno	< 0,5	mg/Nm3
	Acido cloridrico	200 gr/h		378	kg/anno	4,2	mg/Nm3
28					kg/anno		mg/Nm3
20					kg/anno		mg/Nm3
					kg/anno		mg/Nm3
			22485		kg/anno		mg/Nm3
	polveri totali	100 gr/h		255	kg/anno	2,1	mg/Nm3
	Acido cloridrico	25 gr/h			kg/anno	< 0,5	mg/Nm3
-					kg/anno		mg/Nm3
5					kg/anno		mg/Nm3
					kg/anno		OU/mc
			30402		kg/anno		mg/Nm3
	polveri	200 gr/h		234	kg/anno	1,8	mg/Nm3
	acido cloridrico	230 gr/h		208	kg/anno	1,6	mg/Nm3
	sodio	230 gr/h			kg/anno	< 0,2	mg/Nm3
29	cromo III	40 gr/h			kg/anno	< 0,01	mg/Nm3
	HNO3	230 gr/h			kg/anno	< 0,06	mg/Nm3
1			32456		kg/anno	-	mg/Nm3

1.3 Acque di scarico

Per quanto riguarda le acque di scarico, per mantenere basse le portate di scarico come

richiesto dall'autorizzazione vigente, l'impresa effettua notevoli ricircoli compatibilmente alla

qualita' dell'acqua necessaria ai lavaggio dei pezzi.

Tutti i lavaggi da molti anni sono eseguiti in controcorrente.

Tutte le acque di lavaggio sono inviate alla depurazione chimico-fisica all'interno di un

depuratore di recente costruzione.

Per garantire sempre basse portate di scarico, le acque depurate sono inviate ad un vascone

di laminazione all'interno del quale le acque vengono accumulate per 16 ore e rilasciate in

fognatura in 24 ore.

Lo scarico e' collegato al sistema di telecontrollo di VERITAS che frequentemente effettua il

controllo analitico dello scarico.

Nel 2022 lo scarico idrico ha presentato le seguenti caratteristiche :

				RDP	RDP		RDP		
			10069	14469	18948		23930		
PORTATA DI			DEL	DEL	DEL		DEL		
SCARICO (MC/GG)		RDP 6179 DEL	18/05/20	14/07/20	16/09/20	RDP 21436 DEL	14/11/20		
= 14,3	U.M.	25/03/2022	22	22	22	17/10/2022	22	VALORE MEDIO	LIMITI
pH	mg/l	8,0	8,0	7,5	7,7	7,5	8,4	7,9	6 - 9,5
COD	mg/l	233	243	278	285	274	434	291,2	500
Al	mg/l	0,141	0,192	0,137	0,243	0,084	0,417	0,202	2,000
As	mg/l	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	0,000	0,010
Sb	mg/l	0,001	0,002	<0,001	0,001	0,002	0,001	0,001	
Ba	mg/l	0,026	0,021	0,043	0,036	0,028	<0,020	0,026	
В	mg/l	0,272	0,230	0,263	0,391	0,374	0,231	0,294	4,000
Cd	mg/l	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	0,000	0,020
Cr	mg/l	0,180	0,343	0,167	0,296	0,120	0,285	0,232	4,000
Cr VI	mg/l	<0,02	<0,02	<0,02	<0,02	0,04	<0,02	0,007	0,200
Fe	mg/l	0,214	0,147	0,270	0,225	0,189	0,705	0,292	4,000
Mn	mg/l	0,026	0,026	0,025	0,027	0,018	0,015	0,023	4,000
Hg	mg/l	<0,0005	<0,0005	<0,0005	<0,0005	<0,0005	<0,0005	0,000	0,0050
Ni	mg/l	0,119	0,085	0,459	0,119	0,142	0,424	0,225	4,000
Pb	mg/l	<0,001	<0,001	0,002	0,004	<0,001	<0,001	0,001	0,300
Cu	mg/l	<0,020	<0,020	<0,020	<0,020	<0,020	<0,020	0,000	0,400
Se	mg/l	<0,001	<0,001	0,003	0,001	<0,001	0,001	0,001	0,030
Sn	mg/l	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	
TI	mg/l	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	
Te	mg/l	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	
Zn	mg/l	1,904	2,612	1,832	1,671	2,477	2,966	2,244	4,000
Cr III	mg/l	0,18	0,34	0,167	0,296	0,08	0,285	0,225	4,00
F	mg/l	6	4	6	4	6	7	6	12
PO4 (P)	mg/l	0,090	<0,050	0,110	<0,050	0,09	<0,050	0,048	
Azoto nitrico	mg/l	28,1	15,0	23,7	19,0	40,4	37,3	27,3	70,0
Azoto nitroso	mg/l	8,2	10	8,5	6,8	8,2	15,22	9,5	40,0
Azoto ammoniacale	mg/l	15	18	17	20	12	20	17	70
Cloro	mg/l	<0,05	<0,05	0,1	0,10	<0,05	0,1	0,050	
Solfati	mg/l	419	403	<1	454	770	843	482	1000
Oli e grassi	mg/l	7,7	2,9	5,5	4,0	6,0	<2	4,4	40,0
Cloruri	mg/l	1050	418	986	892	1204	1210	960	3000
MBAS	mg/l	3,3	5,7	3,6	3,3	3,2	4,7	4,0	
TAS	mg/l	21,1	9,2	26,7	3,3	16,2	26,1	17,1	
Tensioattivi cationi	mg/l	0,3	0,8	0,3	16,7	0,2	1,1	3,2	
Tensioattivi totali	mg/l	24,7	15,7	30,6	0,2	19,6	31,9	20,5	50,0
TKN	mg/l	26,9	37	43,7	30,3	54,4	20	35,4	10,0

1.4 Risorse idrica

Il consumo idrico e' in capo ad un pozzo storicamente presente nello stabilimento; nel 2022 sono stati prelevati 57.000 mc d'acqua; il consumo idrico per uso igienico-sanitario da rete pubblica e' poco significativo.

1.5 Rifiuti

<u>I rifiuti generati</u> dallo stabilimento sono costituiti da rifiuti liquidi e solidi pericolosi e non

pericolosi.

I rifiuti solidi sono per lo piu' stoccati nella zona nord-est dello stabilimento su cassoni

scarrabili a tenuta; trattasi di fanghi di depurazione (in questo caso i cassoni sono coperti),

carta, legno, ferro, imballaggi.

La zona di deposito di detti rifiuti e' pavimentata; tutti i contenitori sono segnalati con la

segnaletica di legge.

La gran parte dei rifiuti liquidi generati dai processi galvanici sono stoccati direttamente nelle

vasche di lavoro, dalle quali sono aspirati direttamente dagli autospurghi delle imprese di

smaltimento di cui si serve l'impresa.

Altri rifiuti generati in minima quantita' sono contenuti in fusti metallici o big bag al coperto.

1.6 Rumore verso l'esterno

<u>L'impatto acustico</u> e' sempre stato preso in considerazione dall'impresa, realizzando in direzione dei confinanti una barriera acustica alta circa mt 5.

Le verifiche strumentali documentano il rispetto dei limiti fissati dalla zonizzazione acustica comunale.

1.7 Traffico veicolare

Nel corso del 2021 vi sono stati circa 8000 viaggi/anno (circa 30 viaggi/gg).

Il periodo di movimentazione merci con i mezzi va dalle 7:00 del mattino sino alle 18:00 (13

ore/gg); i percorsi dei mezzi di trasporto in ingresso ed uscita dallo stabilimento, al fine di

non disturbare le abitazioni comunali, sono da tempo concordati con il comune di Vigonovo

1.8 Energia

Il consumo elettrico del 2022 tramite energia da rete esterna e' stato pari a 2.600.000 kw; il

cogeneratore da 854 kwe ha generato complessivamente 4.120.000 kw;e' stata immessa in

rete energia elettrica pari a 717.000 kw.

Il consumo totale di gas metano del 2022 e' stato pari a 1.400.000 mc di cui 107.000

consumati nel cogeneratore.

1.9 Acque meteoriche

Vista la superficie pavimentata di raccolta, il volume di acque meteoriche corrispondenti ai

primi 5 mm di pioggia e' pari a 60 mc; assumendo che l'evento si realizzi nell'arco di 15 minuti,

avremmo una portata di scarico pari a 240 mc/h, ossia una portata non gestibile dal

depuratore.

Il sistema di raccolta delle acque pluviali prevede :

invio di tutte le acque pluviali in una vasca di raccolta

• inserimento in detta vasca di una pompa che invia le acque di prima pioggia ad una vasca

esterna di accumulo (Vasca V1) da 60 mc collocata in posizione limitrofa a quella di

stoccaggio delle acque depurate; detta pompa e' asservita ad un contatore volumetrico che, al

raggiungimento all'interno di 24 ore di un volume di 60 mc, devia le acque successive a corso

superficiale o su vasca di ritegno

Dalla vasca V1 le acque di prima pioggia sono inviate integralmente in depurazione chimico-

fisica e quindi scaricate in pubblica fognatura.

1.10 Prevenzione incendi

Le emergenze sono state prese in considerazione dalla direzione dell'azienda, predisponendo

un apposito piano di emergenza; il contenuto del piano di emergenza è stato illustrato al

personale dello stabilimento, che effettua inoltre periodiche sessioni formative unitamente ai

responsabili aziendali.

Il piano di emergenza considera fenomeni incidentali quali :

a) spanti di sostanze pericolose

b) incendi

Il piano descrive nel dettaglio responsabili aziendali, figure di stabilimento atte al coordinamento del personale oltre ad individuare le persone componenti le squadre di emergenza, di primo soccorso e antincendio.

Chiaramente lo stabilimento, ai fini della lotta all'incendio, dispone di tutti i sistemi previsti dalle norme di prevenzione incendi, come :

- estintori portatili
- pulsanti di allarme
- pulsanti di sgancio elettrico
- rete idrica antincendio, riserva idrica e pompe di spinta

L'impianto dispone del certificato di prevenzione incendi in corso di validita'.

2 RIASSUNTO DEI DATI DI PRODUZIONE E CONSUMI ANNO 2022

Materiali ferrosi in ingresso ed uscita 27.000 tn Sottoprodotti avviati alla depurazione, soluzioni basiche esauste 52 mc Sottoprodotti avviati alla depurazione, soluzion acide esauste 84 mc Acqua da pozzo 57.000 mc Energia elettrica da rete esterna 2.600.000 kw Energia elettrica prodotta 4.120.000 kw Energia elettrica immessa in rete 717.000 kw Gas metano da rete 1.400.000 mc

